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Anatomy of an inverse problem

Forward problem
• Well-posed

o solution exists
o solution is unique
o stable w.r.t. perturbation

• Causal
• Local

𝒇 𝒙 + 𝒏 = 𝒚

Inverse problem
• Ill-posed

o not meeting well-
posedness requirement

o sparse observations
• Non-causal
• Global
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How to tackle ill-posedness?
1.Classical (regularization) approach:
Formulate as an optimization problem.
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2.Bayesian approach:
Statistical framework to characterize distribution of parameters 
given some noisy version of measurement.
Posterior distribution
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Challenge I : Priors
• Finding a quantitative description of informative and feasible
priors.
• Typical priors
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• However, what if the prior knowledge may be something like…

Challenge II : Sampling
• Typical physics-driven inverse problem contain large no. of
parameters (104-107).
•MCMC approximation of posterior requires many samples from
posterior, where each sample involves the solution of PDE.
• An efficient sampler is difficult to design for high-dimensional
parameter space.

Central Idea
• Use deep generative model (GAN)s as priors in Bayesian inference
by learning the parameter distribution directly from data.
• Demonstrate GANs as a tool to reduce the dimensionality of
parameter space for efficient posterior sampling.
• Use the quantified uncertainty information for optimal design of
experiments leading to efficient parameter inference.

GAN, the two-player min-max game
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ØWeights of 𝒈 and 𝒅 are obtained by solving min-max problem:
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ØFor a network with infinite capacity and adequate training time:
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GAN as Priors

Experimental Results
• Image denoising:

• Image inpainting + denoising:

• Optimal experimental design / Active learning

• Random sampling

• Variance driven adaptive sampling

• Initial condition inversion
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